By Topic

ReTweeting analysis and prediction in microblogs: An epidemic inspired approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang Hao ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Li Yiping ; Feng Zhuonan ; Feng Ling

Microblogs currently play an important role in social communication. Hot topics currently being tweeted can quickly become popular within a very short time as a result of retweeting. Gaining an understanding of the retweeting behavior is desirable for a number of tasks such as topic detection, personalized message recommendation, and fake information monitoring and prevention. Interestingly, the propagation of tweets bears some similarity to the spread of infectious diseases. We present a method to model the tweets' spread behavior in microblogs based on the classic Susceptible-Infectious-Susceptible (SIS) epidemic model that was developed in the medical field for the spread of infectious diseases. On the basis of this model, future retweeting trends can be predicted. Our experiments on data obtained from the Chinese micro-blogging website Sina Weibo show that the proposed model has lower predictive error compared to the four commonly used prediction methods.

Published in:

Communications, China  (Volume:10 ,  Issue: 3 )