By Topic

VLSI Implementation of a High-Throughput Iterative Fixed-Complexity Sphere Decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xi Chen ; School of Microelectronics, Shanghai Jiao Tong University, Shanghai, China ; Guanghui He ; Jun Ma

By exchanging soft information between the multiple-input multiple-output (MIMO) detector and the channel decoder, an iterative receiver can significantly improve the performance compared to the noniterative receiver. In this brief, a soft-input soft-output fixed-complexity-sphere-decoding algorithm and its very large scale integration architecture are proposed for the iterative MIMO receiver. The deeply pipelined architecture employs the optimized hybrid enumeration to search for the best child node estimate efficiently. By adding the counter hypotheses in parallel with other candidates, the proposed iterative MIMO detector improves the detection performance significantly with low detection latency. An iterative detector for an 4 × 4 64-quadrature amplitude modulation (QAM) MIMO system based on our proposed architecture is designed and implemented using the 90-nm CMOS technology. The detector can achieve a maximum throughput of 2.2 Gbit/s with an area efficiency of 3.96 Mbit/s/kGE, which is more efficient than other iterative MIMO detectors.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:60 ,  Issue: 5 )