By Topic

Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Olaf Schleusing ; Department of Systems Engineering of CSEM, Neuchâtel, Switzerland and was enrolled in the EDIC Doctoral School of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland ; Tomi Kinnunen ; Brad Story ; Jean-Marc Vesin

In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency (f0) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:21 ,  Issue: 8 )