By Topic

Phase Sensitivity Characterization in Fiber-Optic Sensor Systems Using Amplifiers and TDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yi Liao ; Optoelectron. Res. Centre, Univ. of Southampton, Southampton, UK ; Austin, E. ; Nash, P.J. ; Kingsley, S.A.
more authors

We present an analytical approach to accurately model the phase sensitivity, and provide simple analytical formulae, useful in the design, comparison and optimization of multiplexed amplified interferometric fiber-optic based sensor systems. The phase sensitivity model incorporates the various key noise contributions including receiver noise, amplified spontaneous emission (ASE) induced noise, active sources noise and other phase noise terms. We define and present a novel term `Demod phase sensitivity' to take into account the effects from noise aliasing in systems based on time division multiplexed (TDM) architectures. An experiment was conducted that confirmed the appropriateness and accuracy of the phase sensitivity model. The approach is widely applicable but particular appropriate for fiber-optic sensor systems using amplifiers and TDM.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 10 )