By Topic

A method for evaluation of quality of service in computer networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tomasz Bujlow ; Section for Networking and Security, Department of Electronic Systems, Aalborg University, DK-9220, Aalborg East, Denmark ; Sara Ligaard Nørgaard Hald ; Tahir Riaz ; Jens Myrup Pedersen

Monitoring of Quality of Service (QoS) in high-speed Internet infrastructures is a challenging task. However, precise assessments must take into account the fact that the requirements for the given quality level are service-dependent. The backbone QoS monitoring and analysis requires processing of large amounts of data and knowledge of which kinds of applications the traffic is generated by. To overcome the drawbacks of existing methods for traffic classification, we proposed and evaluated a centralized solution based on the C5.0 Machine Learning Algorithm (MLA) and decision rules. The first task was to collect and to provide to C5.0 high-quality training data divided into groups, which correspond to different types of applications. It was found that the currently existing means of collecting data (classification by ports, Deep Packet Inspection, statistical classification, public data sources) are not sufficient and they do not comply with the required standards. We developed a new system to collect training data, in which the major role is performed by volunteers. Client applications installed on volunteers' computers collect the detailed data about each flow passing through the network interface, together with the application name taken from the description of system sockets. This paper proposes a new method for measuring the level of Quality of Service in broadband networks. It is based on our Volunteer-Based System to collect the training data, Machine Learning Algorithms to generate the classification rules and the application-specific rules for assessing the QoS level. We combine both passive and active monitoring technologies. The paper evaluates different possibilities of implementation, presents the current implementation of particular parts of the system, their initial runs and the obtained results, highlighting parts relevant from the QoS point of view.

Published in:

Advanced Communication Technology (ICACT), 2013 15th International Conference on

Date of Conference:

27-30 Jan. 2013