By Topic

A 24.7dBm all-digital RF transmitter for multimode broadband applications in 40nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chao Lu ; MediaTek, San Jose, CA, USA ; Hua Wang ; Peng, C.H. ; Goel, A.
more authors

Recently, digitizing RF circuits has attracted extensive attention by exploiting high speed transistors offered in nano-scale CMOS processes. The digitally-assisted or digital-intensive RF transceivers not only benefit from technology scaling in terms of power efficiency and die area, but also improve functional flexibility. The polar architecture is well recognized for digital RF transmitters [1,2,4,5], while the bandwidth expansion resulting from Cartesian-to-polar transformation makes it difficult to comply with high-speed wireless standards. Open-loop phase interpolation topology was employed in an outphasing transmitter [3], where 12dBm output power was demonstrated with 40MHz 802.11n signal. In this work, an all-digital RF transmitter with direct quadrature architecture is presented to address the need for broadband wireless connectivity.

Published in:

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International

Date of Conference:

17-21 Feb. 2013