By Topic

A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsung-Heng Tsai ; Nat. Chung Cheng Univ., Chiayi, Taiwan ; Kai Chen

Energy harvesting is an attractive technique to take advantage of renewable energy and make systems, such as wireless sensor nodes, less dependent on external power sources. A photovoltaic (PV) energy-harvesting charger can convert energy from solar panels to charge batteries or super capacitors. To manage the variation in illumination, maximum power point tracking (MPPT) is essential to lock the output power of solar panels on the maximum power points [1, 2]. For any generic solar cell, its output current is determined by the output voltage in an exponential relation. Without knowing the characteristics of the solar cell in advance, it is necessary to monitor a feedback parameter to reach its maximum power point. Current measurement is needed at the output of the boost converter [1] or in the output path of the solar cell [2]. Motivated by the topology in [2], we propose a mixed-signal integration to avoid power hungry digital signal processing. In this paper, we report a charger with an integrated MPPT controller that can provide fast tracking for wide-range illumination levels while keeping high conversion efficiency. Also, a battery management unit is implemented and integrated on the same IC.

Published in:

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International

Date of Conference:

17-21 Feb. 2013