By Topic

Transmission-Efficient Clustering Method for Wireless Sensor Networks Using Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruitao Xie ; Dept. of Comput. Sci., City Univ. of Hong Kong, Kowloon, China ; Xiaohua Jia

Compressive sensing (CS) can reduce the number of data transmissions and balance the traffic load throughout networks. However, the total number of transmissions for data collection by using pure CS is still large. The hybrid method of using CS was proposed to reduce the number of transmissions in sensor networks. However, the previous works use the CS method on routing trees. In this paper, we propose a clustering method that uses hybrid CS for sensor networks. The sensor nodes are organized into clusters. Within a cluster, nodes transmit data to cluster head (CH) without using CS. CHs use CS to transmit data to sink. We first propose an analytical model that studies the relationship between the size of clusters and number of transmissions in the hybrid CS method, aiming at finding the optimal size of clusters that can lead to minimum number of transmissions. Then, we propose a centralized clustering algorithm based on the results obtained from the analytical model. Finally, we present a distributed implementation of the clustering method. Extensive simulations confirm that our method can reduce the number of transmissions significantly.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:25 ,  Issue: 3 )