By Topic

Neural Acceleration for General-Purpose Approximate Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This work proposes an approximate algorithmic transformation and a new class of accelerators, called neural processing units (NPUs). NPUs leverage the approximate algorithmic transformation that converts regions of code from a Von Neumann model to a neural model. NPUs achieve an average 2.3× speedup and 3.0× energy savings for general-purpose approximate programs. This new class of accelerators shows that significant performance and efficiency gains are possible when the abstraction of full accuracy is relaxed in general-purpose computing.

Published in:

IEEE Micro  (Volume:33 ,  Issue: 3 )