Cart (Loading....) | Create Account
Close category search window
 

Geometric Swimming at Low and High Reynolds Numbers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Hatton, R.L. ; Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Choset, H.

Several efforts have recently been made to relate the displacement of swimming three-link systems over strokes to geometric quantities of the strokes. In doing so, they provide powerful, intuitive representations of the bounds on a system's locomotion capabilities and the forms of its optimal strokes or gaits. While this approach has been successful for finding net rotations, noncommutativity concerns have prevented it from working for net translations. Our recent results on other locomoting systems have shown that the degree of this noncommutativity is dependent on the coordinates used to describe the problem and that it can be greatly mitigated by an optimal choice of coordinates. Here, we extend the benefits of this optimal-coordinate approach to the analysis of swimming at the extremes of low and high Reynolds numbers.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 3 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.