Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Visual saliency based on selective integration of feature maps in frequency domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ki Tae Park ; Center for Integrated Gen. Educ., Hanyang Univ., Seoul, South Korea ; Jeong Ho Lee ; Young Shik Moon

In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.

Published in:

Consumer Electronics (ICCE), 2013 IEEE International Conference on

Date of Conference:

11-14 Jan. 2013