By Topic

Real-time control of electron density in a capacitively coupled plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Keville, Bernard ; National Centre for Plasma Science and Technology (NCPST), Research and Engineering Building, Dublin City University, Glasnevin, Dublin 9, Ireland and School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland ; Zhang, Yang ; Gaman, Cezar ; Holohan, Anthony M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4795207 

Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:31 ,  Issue: 3 )