Cart (Loading....) | Create Account
Close category search window
 

Enhanced Limited Feedback Schemes for DL MU-MIMO ZF Precoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Wang ; DOCOMO Beijing Commun. Labs. Co., Ltd., Beijing, China ; Harada, A. ; Kayama, H.

This paper proposes new limited-feedback Channel State Information (CSI) calculation schemes for Zero Forcing (ZF)-precoded downlink Multi-User Multiple-Input Multiple-Output (MU-MIMO) systems. It is a common understanding that the feedback quantized by the codebook limits the performance of MU-MIMO. In this paper, through a quasi-ZF or a quasi-Minimum Mean-Squared Error (MMSE) weight, the channel matrix is transferred to one of the codebook vectors, based on which, the CSI is calculated. Thus, the quantization error is minimized. Meanwhile, the selection for the codebook vector guarantees the maximizing of the estimated Signal to Interference plus Noise Ratio (SINR). We verify that the proposed scheme obtains accurate feedback information, and the predicted weight can be the same as the optimal linear decoder as if the receiver knew all the precoder information that is fed-forward from the BS, as long as the number of antennas for each receiver equals that for the transmitter, and equals that for the total transmit data streams. Compared to the commonly used Precoding Matrix Index (PMI) based method, which uses rank-one single user (SU)-MIMO feedback, simulation results show that the proposed schemes achieve higher sum capacities in different scenarios. Moreover, since the weight can be directly used as the decoder, the feed-forward overhead is reduced.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.