By Topic

Electrical Characteristics for Flash Memory With Germanium Nitride as the Charge-Trapping Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chia-Chun Lin ; Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan ; Yung-Hsien Wu ; Yuan-Sheng Lin ; Min-Lin Wu
more authors

Due to a larger band offset and a higher permittivity compared to Si3N4, Ge3N4 formed by NH 3 plasma nitridation of an amorphous Ge film was explored in this study as the charge-trapping layer for flash memory devices. As the nitridation time prolongs, memory window and operation speed are improved accordingly. The improvement is inferred to be the increased number of trapping sites and higher permittivity of the charge-trapping layer caused by the introduction of nitrogen atoms. The former is helpful in storing more charges while the latter offers a higher electric field over the tunnel oxide. Memory devices with 180-s NH3 plasma nitridation hold great potential for advanced memory applications because they possess many promising characteristics such as a large hysteresis memory window, high operation speed, robust endurance performance up to 105 program/erase (P/E) cycles, and good retention characteristic with 15% charge loss after 10-year operation at 85 °C.

Published in:

IEEE Transactions on Nanotechnology  (Volume:12 ,  Issue: 3 )