By Topic

Shannon Meets Nyquist: Capacity of Sampled Gaussian Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuxin Chen ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Eldar, Y.C. ; Goldsmith, A.J.

We explore two fundamental questions at the intersection of sampling theory and information theory: how channel capacity is affected by sampling below the channel's Nyquist rate, and what sub-Nyquist sampling strategy should be employed to maximize capacity. In particular, we derive the capacity of sampled analog channels for three prevalent sampling strategies: sampling with filtering, sampling with filter banks, and sampling with modulation and filter banks. These sampling mechanisms subsume most nonuniform sampling techniques applied in practice. Our analyses illuminate interesting connections between undersampled channels and multiple-input multiple-output channels. The optimal sampling structures are shown to extract out the frequencies with the highest SNR from each aliased frequency set, while suppressing aliasing and out-of-band noise. We also highlight connections between undersampled channel capacity and minimum mean-squared error (MSE) estimation from sampled data. In particular, we show that the filters maximizing capacity and the ones minimizing MSE are equivalent under both filtering and filter-bank sampling strategies. These results demonstrate the effect upon channel capacity of sub-Nyquist sampling techniques, and characterize the tradeoff between information rate and sampling rate.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 8 )