By Topic

Effect of Spatial Dispersion on Surface Waves Propagating Along Graphene Sheets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gomez-Diaz, J.S. ; LEMA/Nanolab, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Mosig, J.R. ; Perruisseau-Carrier, J.

We investigate the propagation of surface waves along a spatially dispersive graphene sheet, including substrate effects. The proposed analysis derives the admittances of an equivalent circuit of graphene able to handle spatial dispersion, using a nonlocal model of graphene conductivity. Similar to frequency-selective surfaces, the analytical admittances depend on the propagation constant of the waves traveling along the sheet. Dispersion relations for the supported TE and TM modes are then obtained by applying a transverse resonance equation. Application of the method demonstrates that spatial dispersion can dramatically affect the propagation of surface plasmons, notably modifying their mode confinement and increasing losses, even at frequencies where intraband transitions are the dominant contribution to graphene conductivity. These results show the need to correctly assess spatial dispersion effects in the development of plasmonic devices at the low THz band.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 7 )