By Topic

Motion periodicity based pedestrian detection and particle filter based pedestrian tracking using stereo vision camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Al-Mutib, K. ; Dept. of Comput. Eng., King Saud Univ., Riyadh, Saudi Arabia ; Emaduddin, M. ; Alsulaiman, M. ; Ramdane, H.
more authors

A novel method is proposed that adapts a previously proposed LADAR based pedestrian detection and tracking technique by introducing a stereo-vision based segmentation technique for the purpose of pedestrian detection and tracking. The proposed method detects the harmonic motions of limbs and body during a typical human walk and temporally propagates the position, stride, direction and phase using a particle filter. The particle-filter uses a human limb-motion model and is able to track the walking pedestrians in a heavily occluded environment. Potential 3D point clusters belonging to arms and feet are extracted employing an adapted version of RANSAC based segmentation algorithm. A Fourier-transform based periodogram confirms the periodicity for each point-cluster representing limbs. Since RGB or intensity data from the stereo-vision input is ignored and the proposed method completely relies upon 3D data produced by the stereo-vision sensor, reliable illumination invariant pedestrian detection and tracking results are achieved using Daimler-Stereo-Pedestrian-Detection-Dataset. Further lab experiments also confirm the viability of the method within the indoor environment.

Published in:

Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference

Date of Conference:

28-30 Nov. 2012