By Topic

Simulation of overhead transmission line insulators under desert environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Osama E. Gouda ; Electrical Power Department, Faculty of Engineering, Cairo University, Cairo, Egypt ; Adel Z. El Dein

Till today, flashover because of pollution of insulators of overhead transmission lines (OHTL) is a major source of trouble in the electrical power transmission system. The importance of this problem can be assessed from fault statistics of high-voltage transmission lines. In Egypt, for example, about 82% of the total faults of transmission and distribution OHTL are because of pollution. This study deals with laboratory tests, which have been carried out on polluted insulators of the OHTL that simulate desert environments. In this study, the effect of the variation of conductivity of the polluted layer by means of equivalent salt deposit density on flashover voltage (FOV) is investigated. The effect of variation of conductivity of the polluted, layer along the time required by the procedure needed to form dew, on FOV is also studied. This study is useful for indicating the worst period after the formation of dew, where the probability of flashover is increased.

Published in:

IET Generation, Transmission & Distribution  (Volume:7 ,  Issue: 1 )