By Topic

A Remote Laboratory as an Innovative Educational Tool for Practicing Control Engineering Concepts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Clara M. Ionescu ; Dept. of Electr. Energy, Syst. & Autom., Ghent Univ., Gent-Zwijnaarde, Belgium ; Ernesto Fabregas ; Stefana M. Cristescu ; Sebastin Dormido
more authors

This paper presents the development, structure, implementation, and some applications of a remote laboratory for teaching automatic control concepts to engineering students. There are two applications: formation control of mobile robots and a ball-plate system. In teaching control engineering, there are two main approaches to control design: model-based control and non-model-based control. Students are given insight into: 1) for model-based control: identification of real processes (i.e., dealing with noise, choosing the sampling time, observing nonlinear effects at startup, pairing input-output variables); and 2) for non-model-based control: the advantages and disadvantages of auto-tuning techniques. The paper concludes by presenting an evaluation of these remote labs and discussing the advantages of using them as complementary tools for teaching control engineering at the Bachelor's and Master's level.

Published in:

IEEE Transactions on Education  (Volume:56 ,  Issue: 4 )