Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Effect of Sequence Discharge on Components in a 600-kJ PPS Used for Electromagnetic Launch System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ling Dai ; State Key Lab. of Adv. Electromagn. Eng. & Technol., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Yanzhao Wang ; Qin Zhang ; Wenting Li
more authors

Pulsed power supply (PPS) applied in the electromagnetic launch system must have a compact design and high reliability. In this paper, a PPS for electromagnetic launch system is built up. The main parts in a pulse forming unit (PFU) of a PPS are energy storage capacitors (8 kV/75 kJ), pulse-shaping inductor (10 μH), pulse thyristor, crowbar diode, and a Rogowski coil for current measuring. The energy storage density of the PFU is 0.74 MJ/m3. Eight PFUs form a pulse forming network (PFN) of 600 kJ. In many cases, the discharge current waveform of the PFN must be adjusted for lower peak value and lower electromagnetic force. On the basis of this PFN, in this paper, we analyze the effect of sequence discharge on the semiconductors. To prevent diode from overvoltage during the recovery process, different parameters of snubber circuit have been researched in the experiments. Finally, we set up a model of the serial augment rail gun in a personal simulation program with integrated circuit emphasis, and the safety of PFU can be affirmed by simulation if the voltage of the rail gun keeps positive during the course of the discharge.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 5 )