By Topic

Robust Adaptive Dynamic Programming With an Application to Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Jiang ; Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, OH, USA ; Zhong-Ping Jiang

This brief presents a novel framework of robust adaptive dynamic programming (robust-ADP) aimed at computing globally stabilizing and suboptimal control policies in the presence of dynamic uncertainties. A key strategy is to integrate ADP theory with techniques in modern nonlinear control with a unique objective of filling up a gap in the past literature of ADP without taking into account dynamic uncertainties. Neither the system dynamics nor the system order are required to be precisely known. As an illustrative example, the computational algorithm is applied to the controller design of a two-machine power system.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )