Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Oblique Pursuits for Compressed Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiryung Lee ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Bresler, Y. ; Junge, M.

Compressed sensing is a new data acquisition paradigm enabling universal, simple, and reduced-cost acquisition, by exploiting a sparse signal model. Most notably, recovery of the signal by computationally efficient algorithms is guaranteed for certain randomized acquisition systems. However, there is a discrepancy between the theoretical guarantees and practical applications. In applications, including Fourier imaging in various modalities, the measurements are acquired by inner products with vectors selected randomly (sampled) from a frame. Currently available guarantees are derived using the so-called restricted isometry property (RIP), which has only been shown to hold under ideal assumptions. For example, the sampling from the frame needs to be independent and identically distributed with the uniform distribution, and the frame must be tight. In practice though, one or more of the ideal assumptions are typically violated and none of the RIP-based guarantees applies. Motivated by this discrepancy, we propose two related changes in the existing framework: 1) a generalized RIP called the restricted biorthogonality property (RBOP); and 2) correspondingly modified versions of existing greedy pursuit algorithms, which we call oblique pursuits. Oblique pursuits are guaranteed using the RBOP without requiring ideal assumptions; hence, the guarantees apply to practical acquisition schemes. Numerical results show that oblique pursuits also perform competitively with, or sometimes better than their conventional counterparts.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 9 )