Cart (Loading....) | Create Account
Close category search window
 

Removal of Ocular Artifacts in EEG—An Improved Approach Combining DWT and ANC for Portable Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hong Peng ; Lab. of Ubiquitous Awareness & Intell. Solutions, Lanzhou Univ., Lanzhou, China ; Bin Hu ; Qiuxia Shi ; Ratcliffe, M.
more authors

A new model to remove ocular artifacts (OA) from electroencephalograms (EEGs) is presented. The model is based on discrete wavelet transformation (DWT) and adaptive noise cancellation (ANC). Using simulated and measured data, the accuracy of the model is compared with the accuracy of other existing methods based on stationary wavelet transforms and our previous work based on wavelet packet transform and independent component analysis. A particularly novel feature of the new model is the use of DWTs to construct an OA reference signal, using the three lowest frequency wavelet coefficients of the EEGs. The results show that the new model demonstrates an improved performance with respect to the recovery of true EEG signals and also has a better tracking performance. Because the new model requires only single channel sources, it is well suited for use in portable environments where constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. The model is also applied and evaluated against data recorded within the EUFP 7 Project-Online Predictive Tools for Intervention in Mental Illness (OPTIMI). The results show that the proposed model is effective in removing OAs and meets the requirements of portable systems used for patient monitoring as typified by the OPTIMI project.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.