Cart (Loading....) | Create Account
Close category search window
 

Data-Free Prior Model for Facial Action Unit Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongqiang Li ; Sch. of Electr. Eng. & Autom., Harbin Inst. of Technol., Harbin, China ; Jixu Chen ; Yongping Zhao ; Qiang Ji

Facial action recognition is concerned with recognizing the local facial motions from image or video. In recent years, besides the development of facial feature extraction techniques and classification techniques, prior models have been introduced to capture the dynamic and semantic relationships among facial action units. Previous works have shown that combining the prior models with the image measurements can yield improved performance in AU recognition. Most of these prior models, however, are learned from data, and their performance hence largely depends on both the quality and quantity of the training data. These data-trained prior models cannot generalize well to new databases, where the learned AU relationships are not present. To alleviate this problem, we propose a knowledge-driven prior model for AU recognition, which is learned exclusively from the generic domain knowledge that governs AU behaviors, and no training data are used. Experimental results show that, with no training data but generic domain knowledge, the proposed knowledge-driven model achieves comparable results to the data-driven model for specific database and significantly outperforms the data-driven models when generalizing to new data set.

Published in:

Affective Computing, IEEE Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

April-June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.