By Topic

Optimal mapping of virtual networks considering reactive reconfiguration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Phuong Nga Tran ; Institute of Communication Networks, Hamburg University of Technology, Germany ; Leonardo Casucci ; Andreas Timm-Giel

Network Virtualization (NV) has recently been considered as a key feature of the Future Internet because it allows easy transition from existing IPv4 based Internet to new mechanisms and protocols, and a more efficient usage of infrastructure by sharing it with different virtual network operators while deploying new services. However, Network Virtualization also raises new challenges for network operators [1]. One of the main challenges is the efficient resource allocation, known as virtual network mapping problem, in which virtual nodes and links are embedded to specific substrate nodes and paths. In this paper, we study this problem for the online scenario, where virtual network requests come and leave dynamically while considering the ability to reconfigure (re-arrange) the currently mapped virtual networks. All the recent research on this topic just focuses on the acceptance ratio of the virtual networks but do not address the possible service disruption during the reconfiguration. This paper proposes a so-called reactive reconfiguration mechanism, which reacts to any rejection of new coming virtual network requests. If a virtual network is rejected due to the lack of physical resources, the mechanism is triggered to reconfigure the currently-mapped networks so that the new request can be embedded. At the same time, it minimizes the number of necessary changes to reduce the service disruption. The mechanism is mathematically formulated as Integer Linear Programming (ILP) problem and solved by CPLEX [2]. Its performance is then evaluated through extensive simulations and compared with the case of no reconfiguration. A heuristic is then proposed to speed up the solving time of the ILP problem while maintaining its performance.

Published in:

Cloud Networking (CLOUDNET), 2012 IEEE 1st International Conference on

Date of Conference:

28-30 Nov. 2012