By Topic

Distributed model predictive consensus via the Alternating Direction Method of Multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tyler H. Summers ; Automatic Control Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland ; John Lygeros

We propose a distributed optimization method for solving a distributed model predictive consensus problem. The goal is to design a distributed controller for a network of dynamical systems to optimize a coupled objective function while respecting state and input constraints. The distributed optimization method is an augmented Lagrangian method called the Alternating Direction Method of Multipliers (ADMM), which was introduced in the 1970s but has seen a recent resurgence in the context of dramatic increases in computing power and the development of widely available distributed computing platforms. The method is applied to position and velocity consensus in a network of double integrators. We find that a few tens of ADMM iterations yield closed-loop performance near what is achieved by solving the optimization problem centrally. Furthermore, the use of recent code generation techniques for solving local subproblems yields fast overall computation times.

Published in:

Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on

Date of Conference:

1-5 Oct. 2012