By Topic

Behavior recognition and anomaly behavior detection using clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feizi, A. ; Fac. of Electr. & Comput. Eng., Univ. of Tabriz, Tabriz, Iran ; Aghagolzadeh, A. ; Seyedarabi, H.

In this paper we propose an approach for behavior modeling and detection of certain types of anomalous behavior. This approach consists of three basic parts. First, we propose busy-idle rates, as the behavior features, to define a behavior model for a block of pixels. Second, given a training set of normal data only, we propose spectral clustering for classifying behaviors wherein block of pixels that exhibit similar behavior models are clustered together. Then a behavior model for each cluster is obtained using the histogram of the samples. Once the behavior models are obtained, we use these models to perform anomalous behavior detection in a test video of the same scene. Experimental results on video surveillance sequences show the effectiveness and speed of proposed method.

Published in:

Telecommunications (IST), 2012 Sixth International Symposium on

Date of Conference:

6-8 Nov. 2012