Cart (Loading....) | Create Account
Close category search window
 

Automatic digital modulation recognition in presence of noise using SVM and PSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Valipour, M.H. ; Dept. of Comput. Eng. & Inf. Technol., Amirkabir Univ. of Technol. (Tehran Polytech.), Tehran, Iran ; Homayounpour, M.M. ; Mehralian, M.A.

Automatic digital modulation recognition in intelligent communication systems is one of the most important issues in software radio and cognitive radio. In this paper a new method will be presented for automatic digital modulation classification in presence of additive white Gaussian noise (AWGN). In this method a set of three different types of features is extracted to be employed in recognition process. Classification is based on support vector machine (SVM) as a powerful method for pattern recognition, and particle swarm optimization (PSO) to configure kernel parameters. Computer simulations of 16 different types of digitally modulated signals corrupted by AWGN are carried out to measure the performance of the method. Employing multiple SVMs in a hierarchical structure as inter-class and intra-class classifiers and also our proposed method for feature selection based on features impact on severance, presents good results in simulations. The results show that with infinite SNR, accuracy tends to 99.9%. Also this method shows eligible robustness in presence of noise as we can see in experiments conducted using low SNR data.

Published in:

Telecommunications (IST), 2012 Sixth International Symposium on

Date of Conference:

6-8 Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.