By Topic

Semianalytical Model of the Subthreshold Current in Short-Channel Junctionless Symmetric Double-Gate Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gnudi, A. ; Adv. Res. Center for Electron. Syst., Univ. of Bologna, Bologna, Italy ; Reggiani, S. ; Gnani, E. ; Baccarani, G.

A 2-D semianalytical solution for the electrostatic potential valid for junctionless symmetric double-gate field-effect transistors in subthreshold regime is proposed, which is based on the parabolic approximation for the potential and removes previous limitations. Based on such a solution, a semi-analytical expression for the current is derived. The potential and current models are validated through comparisons with TCAD simulations and are used to evaluate relevant short-channel effect parameters, such as threshold roll-off, drain-induced barrier lowering, and inverse subthreshold slope. The implications of different possible definitions of threshold voltage, either based on the potential in the channel or on a fixed current level, are discussed. Finally, a fully analytical simplification for the current is suggested, which can be used in compact models for circuit simulations.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 4 )