By Topic

A Dual-Gate Graphene FET Model for Circuit Simulation—SPICE Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ime J. Umoh ; School of Electronics and Computer Science, University of Southampton, Southampton, U.K. ; Tom J. Kazmierski ; Bashir M. Al-Hashimi

This paper presents a SPICE compatible model of a dual-gate bilayer graphene field-effect transistor. The model describes the functionality of the transistor in all the regions of operation for both hole and electron conduction. We present closed-form analytical equations that define the boundary points between the regions to ensure Jacobian continuity for efficient circuit simulator implementation. A saturation displacement current is proposed to model the drain current when the channel becomes ambipolar. The model proposes a quantum capacitance that varies with the surface potential. The model has been implemented in Berkeley SPICE-3, and it shows a good agreement against experimental data with the normalized root-mean-square error less than 10%.

Published in:

IEEE Transactions on Nanotechnology  (Volume:12 ,  Issue: 3 )