By Topic

Simultaneous Facial Feature Tracking and Facial Expression Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongqiang Li ; School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China ; Shangfei Wang ; Yongping Zhao ; Qiang Ji

The tracking and recognition of facial activities from images or videos have attracted great attention in computer vision field. Facial activities are characterized by three levels. First, in the bottom level, facial feature points around each facial component, i.e., eyebrow, mouth, etc., capture the detailed face shape information. Second, in the middle level, facial action units, defined in the facial action coding system, represent the contraction of a specific set of facial muscles, i.e., lid tightener, eyebrow raiser, etc. Finally, in the top level, six prototypical facial expressions represent the global facial muscle movement and are commonly used to describe the human emotion states. In contrast to the mainstream approaches, which usually only focus on one or two levels of facial activities, and track (or recognize) them separately, this paper introduces a unified probabilistic framework based on the dynamic Bayesian network to simultaneously and coherently represent the facial evolvement in different levels, their interactions and their observations. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, all three levels of facial activities are simultaneously recognized through a probabilistic inference. Extensive experiments are performed to illustrate the feasibility and effectiveness of the proposed model on all three level facial activities.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 7 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal