By Topic

A Linear Support Higher-Order Tensor Machine for Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhifeng Hao ; Fac. of Comput., Guangdong Univ. of Technol., Guangzhou, China ; Lifang He ; Bingqian Chen ; Xiaowei Yang

There has been growing interest in developing more effective learning machines for tensor classification. At present, most of the existing learning machines, such as support tensor machine (STM), involve nonconvex optimization problems and need to resort to iterative techniques. Obviously, it is very time-consuming and may suffer from local minima. In order to overcome these two shortcomings, in this paper, we present a novel linear support higher-order tensor machine (SHTM) which integrates the merits of linear C-support vector machine (C-SVM) and tensor rank-one decomposition. Theoretically, SHTM is an extension of the linear C-SVM to tensor patterns. When the input patterns are vectors, SHTM degenerates into the standard C-SVM. A set of experiments is conducted on nine second-order face recognition datasets and three third-order gait recognition datasets to illustrate the performance of the proposed SHTM. The statistic test shows that compared with STM and C-SVM with the RBF kernel, SHTM provides significant performance gain in terms of test accuracy and training speed, especially in the case of higher-order tensors.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 7 )
Biometrics Compendium, IEEE