By Topic

Transferring Subspaces Between Subjects in Brain--Computer Interfacing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samek, W. ; Berlin Inst. of Technol., Berlin, Germany ; Meinecke, F.C. ; Muller, K.-R.

Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multi-subject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 8 )