Cart (Loading....) | Create Account
Close category search window
 

MultiComm: Finding Community Structure in Multi-Dimensional Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xutao Li ; Shenzhen Grad. Sch., Dept. of Comput. Sci., Harbin Inst. of Technol., Shenzhen, China ; Ng, M.K. ; Yunming Ye

The main aim of this paper is to develop a community discovery scheme in a multi-dimensional network for data mining applications. In online social media, networked data consists of multiple dimensions/entities such as users, tags, photos, comments, and stories. We are interested in finding a group of users who interact significantly on these media entities. In a co-citation network, we are interested in finding a group of authors who relate to other authors significantly on publication information in titles, abstracts, and keywords as multiple dimensions/entities in the network. The main contribution of this paper is to propose a framework (MultiComm)to identify a seed-based community in a multi-dimensional network by evaluating the affinity between two items in the same type of entity (same dimension)or different types of entities (different dimensions)from the network. Our idea is to calculate the probabilities of visiting each item in each dimension, and compare their values to generate communities from a set of seed items. In order to evaluate a high quality of generated communities by the proposed algorithm, we develop and study a local modularity measure of a community in a multi-dimensional network. Experiments based on synthetic and real-world data sets suggest that the proposed framework is able to find a community effectively. Experimental results have also shown that the performance of the proposed algorithm is better in accuracy than the other testing algorithms in finding communities in multi-dimensional networks.

description of the attached tkde-gagraphic-48.jpg linked by @xlink:href description of the attached tkde-gagraphic-48.jpg linked by @xlink:href

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

April 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.