By Topic

Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sachhidh Kannan ; Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn , USA ; Jeyavijayan Rajendran ; Ramesh Karri ; Ozgur Sinanoglu

Emerging nonvolatile memory (NVM) technologies, such as resistive random access memories (RRAM) and phase-change memories (PCM), are an attractive option for future memory architectures due to their nonvolatility, high density, and low-power operation. Not withstanding these advantages, they are prone to high defect densities due to the nondeterministic nature of the nanoscale fabrication. We examine the fault models and propose an efficient testing technique to test crossbar-based NVMs. The typical approach to testing memories entails testing one memory element at a time. This is time consuming and does not scale for the dense, RRAM or PCM-based memories. We propose a testing scheme based on “sneak-path sensing” to efficiently detect faults in the memory. The testing scheme uses sneak paths inherent in crossbar memories, to test multiple memory elements at the same time, thereby reducing testing time. We designed the design-for-test support necessary to control the number of sneak paths that are concurrently enabled; this helps control the power consumed during test. The proposed scheme enables and leverages sneak paths during test mode, while still maintaining a sneak path free crossbar during normal operation.

Published in:

IEEE Transactions on Nanotechnology  (Volume:12 ,  Issue: 3 )