By Topic

A Nonlinear Current Control Method for Resistance Spot Welding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kang Zhou ; Dept. of Mech. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China ; Lilong Cai

Resistance spot welding (RSW) is one of the most commonly used methods in the manufacturing process for joining sheet metal together. This paper deals with the constant current control for RSW, which is the most common control strategy in actual applications. Since the process of RSW is nonlinear and time-varying, conventional control schemes do not yield satisfactory performance. To cope with this problem, a new control method is proposed in this paper. By solving the governing equation of the equivalent circuit of the RSW electrical system at each control cycle at its local coordinate frame, a nonlinear relationship between input and output variables is obtained. The relationship can be used to estimate an approximate value of the trigger time of the silicon-controlled rectifier for the next control cycle based on the information of the previous control cycle. In order to compensate the estimation error and improve the performance of the closed-loop system, a proportional-derivative (PD) controller is employed. Because the proposed controller regulates trigger time error instead of output current error, the parameters of the PD controller are easy to determine. The effectiveness of the proposed controller was verified through experiments under different conditions. Experimental results showed that the performance of the proposed controller was much better than that of a well-tuned proportional-integral-derivative controller.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:19 ,  Issue: 2 )