By Topic

Microwave Power Transmission Technologies for Solar Power Satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sasaki, S. ; Inst. of Space & Astronaut. Sci., Japan Aerosp. Exploration Agency, Kanagawa, Japan ; Tanaka, K. ; Maki, K.-I.

A solar power satellite (SPS) is a renewable energy system that converts the sun's energy into electricity in space and transmits it to Earth using microwaves. The SPS concept, first proposed in 1968 in the United States, has recently started attracting increased public attention as a promising energy system that can be used to resolve global environmental and energy problems. One of the most challenging technologies for the SPS is microwave power transmission from the geostationary orbit to the ground. The technologies for microwave power transmission have been studied for more than 40 years since the initial demonstrations in the 1960s; however, for SPS application, considerable research, especially on high-efficiency power conversion between direct current (dc) and radio frequency (RF) and on high-accuracy microwave beam control over a long range, is still needed. This paper introduces the concept of SPS and presents the technologies and issues associated with microwave power transmission from space to ground. Current research status and the future development prospects for microwave power transmission toward commercial SPS use are also described.

Published in:

Proceedings of the IEEE  (Volume:101 ,  Issue: 6 )