By Topic

Resource allocation in multi-cell decode-and-forward relaying OFDMA cellular networks in the presence of multi-cell interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moghaddam, M.H. ; Dept. of Electr. & Comput. Eng., K.N. Toosi Univ. of Technol., Tehran, Iran ; Mohamed-pour, K. ; Andargoli, S.M.H.

This paper aims to formulate power and sub-channel allocation problem in a multi-cell Orthogonal Frequency Division Multiple Access (OFDMA) half-duplex decode-and-forward (DF) relay assisted network in the presence of multi-cell interference. This formulation takes into account multi-cell co-channel interference as one of the critical factors in multi-cell processing. The resulting non-convex optimization problem has been solved by dual decomposition and, an iterative resource allocation algorithm is proposed to find solutions which satisfy Karush-Kuhn-Tucker (KKT) conditions. Two resource allocation strategies based on centralized and distributed policy are derived which maximize the average system throughput (bit/sec/Hz). Simulation results show that the proposed algorithm approach the maximum achievable throughput in comparison with conventional algorithms and provides substantial performance gains compared to single-cell optimization.

Published in:

Telecommunication Technologies (ISTT), 2012 International Symposium on

Date of Conference:

26-28 Nov. 2012