By Topic

On Effective Through-Silicon Via Repair for 3-D-Stacked ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Jiang ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, China ; Qiang Xu ; Eklow, B.

3-D-stacked integrated circuits (ICs) that employ through-silicon vias (TSVs) to connect multiple dies vertically have gained wide-spread interest in the semiconductor industry. In order to be commercially viable, the assembly yield for 3-D-stacked ICs must be as high as possible, requiring TSVs to be reparable. Existing techniques typically assume TSV faults to be uniformly distributed and use neighboring TSVs to repair faulty ones, if any. In practice, however, clustered TSV faults are quite common due to the fact that the TSV bonding quality depends on surface roughness and cleanness of silicon dies, rendering prior TSV redundancy solutions less effective. Furthermore, existing techniques consume a lot of redundant TSVs that are still costly in the current TSV process. This inefficient TSV redundancy can limit the amount of TSVs that is allowed to use and may even become the obstacle to commercial production. To resolve this problem, we present a novel TSV repair framework, including a hardware redundancy architecture that enables faulty TSVs to be repaired by redundant TSVs that are farther apart, the corresponding repair algorithm and the redundancy architecture construction. By doing so, the manufacturing yield for 3-D-stacked ICs can be dramatically improved, as demonstrated in our experimental results.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 4 )