By Topic

Joint Decompression and Decoding for Cloud Radio Access Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Park, S.-H. ; Center for Wireless Communications and Signal Processing Research (CWCSPR), ECE Department, New Jersey Institute of Technology (NJIT), Newark, NJ, USA ; Simeone, O. ; Sahin, O. ; Shamai, S.

In this work, joint decompression and decoding is studied for the uplink of multi-antenna cloud radio access networks. In this system, a set of multi-antenna mobile stations (MSs) wish to communicate with a “cloud” decoder through a set of multi-antenna base stations (BSs), which are connected to the cloud decoder through digital backhaul links of limited capacity. The BSs compress the received signal and send it to the cloud decoder, which performs joint decoding of the signals from all MSs. While the conventional solution prescribes that the cloud decoder performs first decompression and then decoding, recent work has shown that potentially larger rates can be achieved with joint decompression and decoding (JDD) at the cloud decoder. The sum-rate maximization problem with JDD, under the assumption of Gaussian test channels, is shown here to be an instance of a class of non-convex problems known as Difference of Convex (DC) problems. Based on this observation, an iterative algorithm based on the Majorization Minimization (MM) approach is proposed that guarantees convergence to a stationary point of the sum-rate maximization problem. Numerical results demonstrate the advantage of the proposed algorithm compared to the conventional approach based on separate decompression and decoding.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 5 )