Cart (Loading....) | Create Account
Close category search window
 

Towards Next Generation Health Data Exploration: A Data Cube-Based Investigation into Population Statistics for Tobacco

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

Increasingly, experts and interested laypeople are turning to the explosion of online data to form and explore hypotheses about relationships between public health intervention strategies and their possible impacts. We have engaged in a multi-year collaboration to use and design semantic techniques and tools to support the current and next generation of these explorations. We introduce a tool, qb.js, to enable access to multidimensional statistical data in ways that allow non-specialists to explore and create specific visualizations of that data. We focus on explorations of health data - in particular aimed at helping to support the formation and analysis of hypotheses about public health intervention strategies and their correlation with health-related behavior changes. We used qb.js to formulate and explore the hypothesis that youth tobacco access laws have consistent, measurable impacts on the rate of change in cigarette smoking among high school students over time. While focused in this instance on one particular intervention strategy (i.e., limiting youth access to tobacco), this analytics platform may be used for a wide range of correlational analyses. To address this hypothesis, we converted population science data on tobacco-related policy and behavior from Impacteen to a Resource Description framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. A Semantic Data Dictionary enabled mapping between the original datasets and the RDF representation. This allowed for the creation and publication of data visualizations using qb.js. The RDF Data Cube representation made it possible to discover a significant downward effect from the introduction of nine youth tobacco access laws on the rate of change in smoking prevalence among high school-aged youth.

Published in:

System Sciences (HICSS), 2013 46th Hawaii International Conference on

Date of Conference:

7-10 Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.