By Topic

Prediction Intervals for a Noisy Nonlinear Time Series Based on a Bootstrapping Reservoir Computing Network Ensemble

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chunyang Sheng ; Res. Center of Inf. & Control, Dalian Univ. of Technol., Dalian, China ; Jun Zhao ; Wei Wang ; Leung, H.

Prediction intervals that provide estimated values as well as the corresponding reliability are applied to nonlinear time series forecast. However, constructing reliable prediction intervals for noisy time series is still a challenge. In this paper, a bootstrapping reservoir computing network ensemble (BRCNE) is proposed and a simultaneous training method based on Bayesian linear regression is developed. In addition, the structural parameters of the BRCNE, that is, the number of reservoir computing networks and the reservoir dimension, are determined off-line by the 0.632 bootstrap cross-validation. To verify the effectiveness of the proposed method, two kinds of time series data, including the multisuperimposed oscillator problem with additive noises and a practical gas flow in steel industry are employed here. The experimental results indicate that the proposed approach has a satisfactory performance on prediction intervals for practical applications.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )