Cart (Loading....) | Create Account
Close category search window
 

Differential algebra for control systems design: Constructive computation of canonical forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pico-Marco, E. ; Dept. of Syst. Eng. & Autom., Univ. Politec. de Valencia, Valencia, Spain

Many systems can be represented using polynomial differential equations, particularly in process control, biotechnology, and systems biology [1], [2]. For example, models of chemical and biochemical reaction networks derived using the law of mass action have the form ẋ = Sv(k,x), (1) where x is a vector of concentrations, S is the stoichiometric matrix, and v is a vector of rate expressions formed by multivariate polynomials with real coefficients k . Furthermore, a model containing nonpolynomial nonlinearities can be approximated by such polynomial models as explained in "Model Approximation". The primary aims of differential algebra (DALG) are to study, compute, and structurally describe the solution of a system of polynomial differential equations,f (x,ẋ, ...,x(k)) =0, (2) where f is a polynomial [3]-[6]. Although, in many instances, it may be impossible to symbolically compute the solutions, or these solutions may be difficult to handle due to their size, it is still useful to be able to study and structurally describe the solutions. Often, understanding properties of the solution space and consequently of the equations is all that is required for analysis and control design.

Published in:

Control Systems, IEEE  (Volume:33 ,  Issue: 2 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.