By Topic

Comprehensive extensibility of 20nm low power/high performance technology platform featuring scalable high-k/metal gate planar transistors with reduced design corner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
H. Fukutome ; Samsung Electronics Co., Ltd., San #24 Nongseo-Dong, Giheung-Gu, Yongin-City, Gyeonggi-Do 446-711 Korea ; K. Y. Cheon ; J. P. Kim ; J. C. Kim
more authors

Extensibility of the high-k/metal gate (HK/MG) planar devices beyond 20nm node with high performance, low power consumption, less layout dependence and suppressed local variability were comprehensively studied among gate first (GF) and gate-last (GL) schemes for the first time. We demonstrated the N-/PFET drive current (Idsat) of 1.45/1.3 mA/μm with the off-leakage current (Ioff) of 100 nA/μm for the Vdd of 0.9V by scaling down the gate width (Wg) of GL-HK/MG devices to 60nm. Key layout dependence of the PFET with embedded SiGe source/drain (eSiGe) was improved by eSiGe interface engineering and scaling down the Wg with keeping the multiple threshold voltage (Vt) and improving the body-bias effect (BE). Moreover, we demonstrated reduction in the capacitance by conventional method even for such a scaled planar device. Finally, we achieved the sufficiently low Vt mismatch, which is required to reduce the design corner, by eSiGe interface engineering and reduction of interface states in the gate stack (Dit).

Published in:

Electron Devices Meeting (IEDM), 2012 IEEE International

Date of Conference:

10-13 Dec. 2012