By Topic

Feasibility for Microwaves Energy to Affect Biological Systems Via Nonthermal Mechanisms: A Systematic Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Francesca Apollonio ; Italian Inter-University Center of Electromagnetic Fields and Biosystems (ICEmB) and DIET, ¿La Sapienza¿ University of Rome, Rome, Italy ; Micaela Liberti ; Alessandra Paffi ; Caterina Merla
more authors

The understanding of possible nonthermal bio-effects has been an open question during the last five decades. In this paper, the authors present a critical literature review of the models of the interaction mechanisms, together with an overview of all the publications finding positive results for in vitro and in vivo studies. The systematic approach consisted of pooling together the positive studies on the basis of the endpoints and the biological systems, to identify specific plausible targets of the action of the electromagnetic fields and the related pathways. Such a classification opens the way to the discussion of some hypotheses of interaction mechanisms considered as first transduction step. The authors conclude that only through a multiscale methodology it is possible to perform a comprehensive study of the nonthermal effects, based on affordable and realistic in silico models.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:61 ,  Issue: 5 )