By Topic

A neural network approach to coronary heart disease risk assessment based on short-term measurement of RR intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
F. Azuaje ; NIBEC, Ulster Univ., UK ; W. Dubitzky ; X. Wu ; P. Lopes
more authors

Using short-term heart rate variability (HRV) measurements, this study investigates the relationship between respiratory sinus arrhythmia (RSA) and Coronary Heart Disease (CHD) risk in asymptomatic patients who nevertheless exhibit CHD risk factors. The aim is to train an artificial neutral network (ANN) to recognise HRV patterns related to CHD risk via a Poincare plot encoding. The ANN correctly classified 6 out of 9 `high' 6 out of 9 `medium', and 6 out of 9 `low' risk test cases. It is expected that this result can be improved by increasing the number of input neurons and by using different preprocessing techniques. This study showed that an ANN approach can be successful in detecting individuals at varying risk of CHD based on short-term HRV measurements under controlled breathing

Published in:

Computers in Cardiology 1997

Date of Conference:

7-10 Sep 1997