By Topic

SAR target feature extraction based on sparse constraint nonnegative matrix factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin Gao ; Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan ; Zongjie Cao ; Yingxi Zheng ; Yong Fan
more authors

Feature extraction is the key technology and the core task of Synthetic Aperture Radar (SAR) target recognition. In this paper, a new target feature extracting method based on Sparse Non-negative Matrix Factorization (SNMF) is presented, which mainly use SNMF as the method to decompose the SAR target image and to construct the sparse feature vector. By this means, the similarity inside each cluster of the feature vectors is improved and the difference between the clusters is also raised. An identification test using the classification method of Support Vector Machine (SVM) demonstrates that the proposed method, compared to PCA, ICA and the general NMF feature extraction methods, can improve the stability and the accuracy of the target recognition significantly.

Published in:

2012 IEEE Globecom Workshops

Date of Conference:

3-7 Dec. 2012