Cart (Loading....) | Create Account
Close category search window
 

An Energy-Efficient Framework for the Analysis of MIMO Slow Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Varma, V.S. ; Orange Labs., Issy Les Moulineaux, France ; Lasaulce, S. ; Debbah, M. ; Elayoubi, S.E.

In this paper, a new energy-efficiency performance metric is proposed for multiple-input multiple-output (MIMO) point-to-point systems. In contrast with related works on energy-efficiency, this metric translates the effects of using finite blocks for transmitting, using channel estimates at the transmitter and receiver, and considering the total power consumed by the transmitter instead of the radiated power only. The main objective pursued is to choose the best precoding matrix used at the transmitter in the following two scenarios : 1) the one where imperfect channel state information (CSI) is available at the transmitter and receiver and 2) the one where no CSI is available at the transmitter. In both scenarios, the problem of optimally tuning the total used power is shown to be nontrivial. In scenario 2), the optimal fraction of training time can be characterized by a simple equation. These results and others provided in the paper, along with the provided numerical analysis, show that the present work can therefore be used as a good basis for studying power control and resource allocation in energy-efficient multiuser networks.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 10 )

Date of Publication:

May15, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.