Cart (Loading....) | Create Account
Close category search window
 

Semisupervised Distance-Preserving Self-Organizing Map for Machine-Defect Detection and Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weihua Li ; Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China ; Shaohui Zhang ; Guolin He

Many intelligent learning methods have been successfully applied in gearbox fault diagnosis. Among them, self-organizing maps (SOMs) have been used effectively as they preserve the topological relationships of data. However, the structures of data clusters learned by SOMs may not be apparent and their shapes are often distorted. This paper presents a semisupervised diagnosis method based on a distance-preserving SOM for machine-fault detection and classification, which can also be used to visualize the SOM learning results directly. An experimental study performed on a gearbox and bearings indicated that the developed approach is effective in detecting incipient gear-pitting failure and classifying different bearing defects and levels of ball-bearing defects.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:62 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.