Cart (Loading....) | Create Account
Close category search window

Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bronzi, D. ; Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy ; Tisa, S. ; Villa, F. ; Bellisai, S.
more authors

We present a single-photon avalanche diode (SPAD) front-end circuitry, in a cost-effective 0.35 $mu{rm m}$ CMOS technology, for single-photon detection in the visible wavelength range, aimed at speeding up the sensing of detector ignition and at promptly quenching the avalanche current buildup. The circuit allows the reduction in detrimental effects of afterpulsing through reducing any delays in the electronics intervention on the detector and through a proper time-varying action of the MOS transistors on the different SPAD's operating conditions. The sensing time is reduced down to a few hundreds of picoseconds, with an active quenching transition of about 1 ns for 6 V excess bias, and a final reset in just 3 ns.

Published in:

Photonics Technology Letters, IEEE  (Volume:25 ,  Issue: 8 )

Date of Publication:

April15, 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.